Ensemble learning with imbalanced data handling in the early detection of capital markets

نویسندگان

چکیده

Research aims: This study aims to create an early detection model predict events in the Indonesian capital market.Design/Methodology/Approach: A quantitative comparing ensemble learning models with imbalanced data handling detected market events. used five models—Random Forest, ExtraTrees, CatBoost, XGBoost, and LightGBM—to detect by data, such as under sampling (RUS), oversampling (SMOTE, SMOTE-Broder, ADASYN), over-under (SMOTE-Tomek, SMOTE-ENN), weighted (class weight). Global regional stock markets, commodities, exchange rates, technical indicators, sectoral indices, JCI leaders, MSCI, net buys of foreign stocks, national securities, share ownership all predicted lowest return Crisis Management Protocol (CMP) binary responses.Research findings: Hyperparameters thresholds were tuned produce optimum model. The best had highest G-mean. ExtraTrees SMOTE-ENN number one-day events, a G-Mean 96.88%. LightGBM SMOTE five-day 89.21% G-Mean. With 89.49%, CatBoost SMOTE-Border was for 15-day event. In addition, SMOTE-Tomek 68.02% 30-day Further, performance evaluation scores decreased increased prediction time.Theoretical contribution/Originality: work relates more imbalance methods cases.Practitioner/Policy implication: Capital markets can indicate economic stability. Maintaining efficacy value requires system pressure.Research limitation/Implication: 1, 5, 15, 30 days ahead, assuming working days. model's forecast results are expected be utilized monitor take precautions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Ensemble Learning for Imbalanced Data Streams

While both cost-sensitive learning and online learning have been studied extensively, the effort in simultaneously dealing with these two issues is limited. Aiming at this challenge task, a novel learning framework is proposed in this paper. The key idea is based on the fusion of online ensemble algorithms and the state of the art batch mode cost-sensitive bagging/boosting algorithms. Within th...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes abstract language learning strategies are of the most important factors that help language learners to learn a foreign language and how they can deal with the four language skills specifically speaking skill effectively. acknowledging the great impact of learning strategies...

Integrating Selective Pre-processing of Imbalanced Data with Ivotes Ensemble

In the paper we present a new framework for improving classifiers learned from imbalanced data. This framework integrates the SPIDER method for selective data pre-processing with the Ivotes ensemble. The goal of such integration is to obtain improved balance between the sensitivity and specificity for the minority class in comparison to a single classifier combined with SPIDER, and to keep over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Accounting and Investment

سال: 2023

ISSN: ['2622-3899', '2622-6413']

DOI: https://doi.org/10.18196/jai.v24i2.17970